2022年8月2日,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。
大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。
为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。
为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。
综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。
图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。
中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。中国科学院自动化研究所微观重建与智能分析团队的马宏图工程师、沈丽君副研究员、李琳琳副研究员、张丽娜工程师以及洪贝、翟昊等博士生在研究过程中给予了帮助和支持。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。
刘静助理研究员,2022年模式识别与智能系统专业博士毕业,主要从事微观脑连接图谱的自动重建算法研究,已在该领域发表论文10余篇,包括Cell Rep、BSPC、NB(封面)、iScience等。陈曦研究员,长期从事微观脑连接图谱的显微图像三维配准算法研究和系统研发,已在该领域发表论文50余篇,包括Science、Lab Chip、NSR、IJCAI等,授权发明专利20余项。李贞辰博士生入选自动化所直博生实验班,主要研究基于拓扑图模型的神经元重建算法优化和脑连接网络建模分析。
论文网址:https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00960-3