刘国乐

刘国乐  /  

  • 职  称: 副高级
  • 邮  编: 100190
  • 电子邮件: guole.liu@ia.ac.cn
  • 部门/实验室: 多模态人工智能系统重点实验室
  • 通讯地址: 北京市海淀区中关村东路95号

个人简历

刘国乐,中国科学院自动化研究所多模态人工智能系统全国重点实验室副研究员,获北京市博士优秀毕业生、中国科学院院长优秀奖,长期从事科学人工智能(AI for Science)领域研究,聚焦深度学习与生物学应用的交叉,将AI应用于数字细胞模型构建、原位结构生物学数据分析。创新性地开发了基于深度学习的大分子复合物识别方法;建立了现有最大细胞量(1.2亿)和最大参数量(1.3亿)的首个知识驱动跨物种生命基础大模型,在Cell Research、Nature Communications、Bioinformatics等期刊,以及AAAI、ECCV、ISBI、BIBM等人工智能领域核心会议上发表论文30余篇。致力于开发基于深度学习的新计算工具、算法和模型分析技术处理大规模生物信息数据,辅助解析关键生物大分子高分辨率结构,以及解读跨物种基因通用调控关系,通过跨学科交叉融合解决生物信息学难题。从参加工作至今,承担或参与多个国自然基金项目和中科院先导项目,获得2项授权发明专利。

研究方向

科学人工智能(AI for Science),单细胞多组学大模型

承担科研项目情况

1.  国家自然科学基金青年项目,2025.1-2027.12,项目负责人

2.  中科院自动化所多模态实验室青年基金,2024.7-2025.6,项目负责人

3.  中科院战略性先导项目,2020.1-2024.12,科研骨干

4.  国家自然科学基金面上项目,2020.1-2023.12,科研骨干

代表论文

1.  G. Liu#, T. Niu#, M. Qiu, Y. Zhu, F. Sun*, and G. Yang*, “DeepETPicker: Fast and accurate 3D particle picking for cryo-electron tomography using weakly supervised deep learning,” Nature Communications, vol. 15, no. 1, pp. 2090, 2024/03/07, 2024, SCI收录.

2.   X. Yang#, G. Liu#, G. Feng#, D. Bu#, P. Wang#, J. Jiang, S. Chen, Q. Yang, Y. Zhang, Z. Man, Z. Liang, Z. Wang, Y. Li, Z. Li, Y. Liu, Y. Tian, A. Li, J. Dong, Z. Hu, C. Fang, H. Miao, L. Cui, Z. Deng, H. Jiang, W. Cui, J. Zhang, Z. Yang, H. Li, X. He, L. Zhong, J. Zhou, Z. Wang, Q. Long, P. Xu, H. Wang, Z. Meng, X. Wang, Y. Wang, Y. Wang, S. Zhang, J. Guo, Y. Zhao, Y. Zhou*, F. Li*, J. Liu*, Y. Chen*, G. Yang*, and X. Li*, “GeneCompass: Deciphering Universal Gene Regulatory Mechanisms with Knowledge-Informed Cross-Species Foundation Model,” Cell Research, 2024, SCI收录.

3.   G. Liu, H. Shi, H. Zhang, Y. Zhou, Y. Sun, W. Li, X. Huang, Y. Jiang, Y. Fang*, and G. Yang*, “Fast Noninvasive Morphometric Characterization of Free Human Sperms Using Deep Learning,” Microscopy and Microanalysis, vol. 28, no. 5, pp. 1767-1779, 2022, SCI收录.

4.   G. Liu, Y. Luo, and G. Yang*, "3d particle picking in cryo-electron tomograms using instance segmentation," 2022 IEEE International Conference on Image Processing (ICIP), pp. 2157-2161, 2022, EI收录.

5.   G. Liu, G. Zhang*, and L. Jing, “Experimental and numerical study of the frequency-dependent transport ac losses of the YBa2Cu3O7− δ coil with and without flux diverters,” Superconductor Science and Technology, vol. 32, no. 5, pp. 055002, 2019, SCI收录.

6.   G. Liu, G. Zhang*, L. Jing, L. Ai, H. Yu, W. Li, and Q. Liu, “Study on the AC loss reduction of REBCO double pancake coil,” IEEE Transactions on Applied Superconductivity, vol. 28, no. 8, pp. 1-6, 2018, SCI收录.

7.   G. Liu, G. Zhang*, L. Jing, L. Ai, W. Li, S. Liu, and Q. Liu, “Comparison of ac losses of ybco circular pancake coils and infinitely long stack approximation,” Journal of Superconductivity and Novel Magnetism, vol. 31, pp. 3141-3146, 2018, SCI收录.

8.   G. Liu, G. Zhang*, H. Yu, L. Jing, L. Ai, and Q. Liu, “Experimental and numerical study of frequency-dependent transport loss in YBa2Cu3O7–δ coated conductors with ferromagnetic substrate and copper stabilizer,” Journal of Applied Physics, vol. 121, no. 24, 2017, SCI收录.

9.   G. Liu, G. Zhang*, L. Jing, H. Yu, L. Ai, W. Yuan, and W. Li, “Influence of substrate magnetism on frequency-dependent transport loss in HTS-coated conductors,” IEEE Transactions on Applied Superconductivity, vol. 27, no. 8, pp. 1-7, 2017, SCI收录.

10.  G. Liu, G. Zhang*, L. Jing, and H. Yu, “Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter,” Superconductor Science and Technology, vol. 30, no. 12, pp. 125014, 2017, SCI收录.

专利成果

1.  刘国乐, 靳杰, 石浩, 降雨强, 杨戈, 杨涛, 基于深度神经网络对活体细胞形态检测的方法及相关产品, 中国 ZL202110169830.7, 2022, 发明专利,授权.

2.  刘国乐, 牛彤欣, 裘梦轩, 孙飞, 杨戈, 朱赟, 基于深度学习的冷冻电镜颗粒挑选方法、装置和电子设备, 中国 ZL202211284170.8, 2023, 发明专利,授权.