王鹏

王鹏  /  

  • 职  称: 正高级
  • 邮  编: 100190
  • 电子邮件: peng_wang@ia.ac.cn
  • 部门/实验室: 多模态人工智能系统全国重点实验室
  • 通讯地址: 北京市海淀区中关村东路95号自动化大厦419

个人简历

工作经历
2023.01 -         中国科学院自动化所,多模态人工智能系统全国重点实验室,研究员、博士生导师
2021.01 -         中国科学院人工智能创新研究院“2035创新任务”,负责人
2017.10 - 2022.12    中国科学院自动化所,复杂系统管理与控制国家重点实验室,研究员、博士生导师
2020.07 - 2022.12    中国科学院脑科学与智能技术卓越创新中心,特聘研究员
2018.04 - 2018.05    美国加州大学伯克利分校,访问学者
2016.09 - 2016.10    德国慕尼黑工业大学,访问学者
2012.11 - 2017.10    中国科学院自动化所,副研究员
2010.07 - 2012.10    中国科学院自动化所,助理研究员
教育经历
2007.09-2010.07   中国科学院自动化所,复杂系统管理与控制国家重点实验室,控制理论与控制工程,工学博士
2005.07-2007.07   哈尔滨工业大学航天学院,控制科学与工程,工学硕士
2000.09-2004.07   哈尔滨工程大学自动化学院,电气工程及自动化,工学学士

研究方向

1、类人灵巧操作机器人   2、灵巧抓取与操作学习  3、类人灵巧手与仿人臂   4、机器人视觉深度学习模型                                 5、类脑与神经拟态机器人

承担科研项目情况

1.神经拟态机器人,2035创新任务,2021.1-2023.12;2.神经拟态灵巧操作机器人,中科院先导专项/交叉攻关项目,2020.1-2022.12;   3.终身学习视觉感知,科技委基金,2022.1-2024.12;   4.基于注意-记忆-学习的非结构环境感知与机器人自主作业,国家自然科学基金共融机器人重大研究计划,2018.01-2020.12;         5.脑智交叉研究平台--类脑智能体验证平台,国家科学中心重点项目,2020.01-2022.12;                            6.智能服务机器人技术,2019.01-2021.12;             7.时空大数据集成分析与认知计算,国家重点研发计划课题,2020.01-2022.12;    8.高端磁学装备数字样机,中科院先导专项,2020.01-2022.12;               9.光机组件视觉检测与定位算法研究,国家自然基金面上项目,2014.01-2017.12;
10.引入视觉注意机制的视觉跟踪方法研究,国家自然科学基金青年,2012.01-2014.12;                
11.基于类脑学习的非结构化环境感知方法研究,装备预研基金,2017.01-2018.12;                           12.中科院青年创新促进会人才项目,2015.01-2018.12;                               13.数字化设计与验证,国家重大科技专项,2017.01-2018.06;                          14.数字化设计与系统集成,国家重大科技专项,2016.01-2017.06;
15.驱动器数字化系统总体设计与系统集成,国家重大科技专项,2014.07-2015.12;                               16.激光驱动器数字样机建模与验证,重大专项,2013.07-2014.07;
17.光机组件半自动化装校验证系统及关键技术研究,重大专项外协,2013.12-2014.12;                            18.光机组件可视化装配检测与定位技术研究,重大专项外协,2012.01-2013.10;    19.高功率固体激光驱动器集成安装理论模型,重大专项外协,2012.01-2012.12;    20.高功率固体激光驱动器集成安装理论模型,重大专项外协,2012.01-2012.12

代表论著

1.Haonan Duan, Yiming Li, Daheng Li, Wei Wei, Yayu Huang, Peng Wang*, Learning Realistic and Reasonable Grasps for Anthropomorphic Hand in Cluttered Scenes, IEEE International Conference on Robotics and Automation (ICRA), 2024;      2.Yiming Yang, Zechang Wang, Dengpeng Xing, Peng Wang*, Learning Playing Piano with Bionic-Constrained Diffusion Policy for Anthropomorphic Hand, Cyborg and Bionic Systems, 2024;      3.Haonan Duan, Yifan Yang, Daheng Li, Peng Wang*, Human-Robot Object Handover: Recent Progress and Future Direction , Biomimetic Intelligence and Robotics, Volume 4, Issue 1, March 2024.         4.Yayu Huang, Zhenghan Wang, Xiaofei Shen, Qian Liu, and Peng Wang*, Human-like Dexterous Teleoperation for Anthropomorphic Hand-arm Robotic System, The 16th International Conference on Intelligent Robotics and Applications, 2023. (Best Student Paper Award)      5.Wanyi Li, Wei Wei, Peng Wang*, Continual Learning for Anthropomorphic Hand Grasping,  IEEE Transactions on Cognitive and Developmental Systems, 2023.   6.Wanyi Li, Wei Wei, Peng Wang*, Neuro-inspired Continual Anthropomorphic Grasping, iScience, Cell Press, 2023.         7.Haonan Duan, Peng Wang*, Yiming Li, Daheng Li, Wei Wei,Learning Human-to-Robot Dexterous Handovers for Anthropomorphic Hand, IEEE Transactions on Cognitive and Developmental Systems, 2022.         8.Wei Wei, Daheng Li, Peng Wang*, et. al., DVGG: Deep Variational Grasp Generation for Dextrous Manipulation, IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1659-1666,2022.         9.Yiming Li, Wei Wei, Daheng Li, Peng Wang*, et. al., HGC-Net: Deep Anthropomorphic Hand Grasping in Clutter. IEEE International Conference on Robotics and Automation (ICRA), 2022.         10.Yu, Chunmiao and Wang, Peng*,Dexterous Manipulation for Multi-Fingered Robotic Hands With Reinforcement Learning: A Review,Frontiers in Neurorobotics, 2022.         11.Li, Yinlin, Wang, Peng,  Li, Rui, Tao, Mo, Liu, Zhiyong and Qiao, Hong,A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods,Frontiers in Neurorobotics,2022.         12.Yuxin Sun, Li Su, Yongkang Luo, Hao Meng, Wanyi Li, Zhi Zhang, Peng Wang, Wen Zhang, Global Mask R-CNN for marine ship instance segmentation, Neurocomputing, Volume 480, 2022  13.Haonan Duan, Peng Wang*, et. al., Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning, Frontiers in Neurorobotics, volume 15, 2021.   14.Wei Wei, Peng Wang*, et. al., GPR: Grasp Pose Refinement Network for Cluttered Scenes, IEEE International Conference on Robotics and Automation (ICRA), 2021.         15.Chenlin Zhou, Peng Wang*, et. al., ACR-Net: Attention Integrated and Cross-spatial Feature Fused Rotation Network for Tubular Solder Joint Detection, IEEE Transactions on Instrumentation and Measurement, 2021.         16.Guangyun Xu, Peng Wang*, et. al., POIS: Policy-Oriented Instance Segmentation for Ambidextrous Robot Picking, IEEE International Conference on Robotics and Automation (ICRA), 2021          17.Chenlin Zhou, Peng Wang*, et. al., BV-Net : Bin-based Vector-predicted Network for Tubular Solder Joint Detection, Measurement, Elsevier, 2021           18.Yiming Li, Peng Wang*, et. al., Simultaneous Semantic and Collision Learning for 6-DoF Grasp Pose Estimation, IROS 2021          19.Yiming Li, Peng Wang*, et. al., ADEL: Autonomous Developmental Evolutionary Learning for Robotic Manipulation, ICDL 2021          20.Wen Zhang , Xujie He , Wanyi Li , Zhi Zhang , Yongkang Luo , Li Su , and Peng Wang, A Robust Deep Affinity Network for Multiple Ship Tracking, IEEE Transactions on Instrumentation and Measurement,  2021          21.Yunqian He, Guihua Xia, Yongkang Luo, Li Su, Zhi Zhang, Wanyi Li, Peng Wang, DVFENet: Dual-branch voxel feature extraction network for 3D object detection, Neurocomputing, Volume 459, 2021,Pages 201-211.
22.Wen Zhang, Xujie He, Wanyi Li, Zhi Zhang, Yongkang Luo, Li Su, Peng Wang, An integrated ship segmentation method based on discriminator and extractor, Image and Vision Computing, Volume 93, 2020. 23.Jia Sun, Peng Wang*, Yongkang Luo, Wanyi Li. Surface Defects Detection Based on Adaptive Multi-scale Image Collection and Convolutional Neural Networks, IEEE Transactions on Instrumentation and Measurement, Volume: 68, Issue:12, 4787-4797, DECEMBER 2019.      24.Xuanyang Xi#, Yongkang Luo#*, Peng Wang, and Hong Qiao. Salient object detection based on an efficient end-to-end saliency regression network. Neurocomputing, 323:265–276, 2019.   25.Jia Sun, Peng Wang*, Yongkang Luo, Gaoming Hao, Hong Qiao. Precision Work-piece Detection and Measurement Combining Top-down and Bottom-up Saliency[J]. International Journal of Automation and Computing. vol. 15, no. 4, pp. 417-430, 2018.         26.Wenjun Zhu, peng wang*, Rui Li ,  Xiangli Nie ,  Real-time 3D Work-piece Tracking with Mo-nocular Camera Based on Static and Dynamic Model Libraries, Assembly Automation, Vol. 37 Iss: 2, 219~229, 2017.         27.Sun, Jia; Wang, Peng*; Qin, Zhengke; Qiao Hong,Effective self-calibration for camera parameters and hand-eye geometry based on two feature points motions,IEEE/CAA Journal of Automatica Sinica,4(2), 370–380,2017.     28.Xu, D., Lu, J., Wang, P., Zhang, Z., & Liang, Z. Partially decoupled image-based visual servoing using different sensitive features. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume: 47, Issue: 8, 2233 - 2243 ,Aug. 2017.         29.Zhengke Qin, Peng Wang*, Jia Sun, Jinyan Lu, and Hong Qiao, Precise Robotic Assembly for Large-Scale Objects Based on Automatic Guidance and Alignment,IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 6, June 2016.         30.Wanyi Li,Peng Wang, and Hong Qiao, Top-down Visual Attention Integrated Particle Filter for Robust Object Tracking,Signal Processing: Image Communication, 2016 ,43 ,28–41.      31.Peng Wang et. al.,  Online appearance model learning and generation for adaptive visual tracking, IEEE Transaction on Circus and System for Video Technology, 21(2), Feb. 2011, 156-169.   32.Peng Wang et. al., Adaptive probabilistic tracking with reliable particle selection, Electronics Letters, 45 (23), Nov. 2009, pp. 1160-1161.         33.Yongkang Luo, Peng Wang, Wenjun Zhu, and Hong Qiao. Sparse-Distinctive Saliency Detection. IEEE Signal Processing Letter, Vol. 22, No.9: 1378-1382, 2015.         34.Wei Liu, Peng Wang et. al., Part-based adaptive detection of work- pieces using Differential Evolution,Signal Processing,2012, 92(2),301-307.   35.Zhicai Ou, Peng Wang et. al., Sub-pattern bilinear model and its application in pose estimation of work-pieces, Neurocomputing,2012, 83,176-187.           36.Wanyi Li、Peng Wang、Rui Jiang、Hong Qiao ,Robust object tracking guided by top-down spectral analysis visual attention ,Neurocomputing, 152, pp 170-178, 2015.         37.Peng Wang ; Zhengke Qin; Wei Zou, Planetary Landing Point Tracking Based on Multiple Reference Points, IEEE International Conference on Mechatronics and Automation (ICMA), 2017.8.6-2017.8.10   38.Peng Wang et al., Adaptive Probabilistic Tracking with Discriminative Feature Selection for Mobile Robot, IEEE International Conference on Systems, Man, and Cybernetics (SMC) , 2016          39.Peng Wang, Zhengke Qin, Zhao Xiong, Jinyan Lu, De Xu, Xiaodong Yuan and Changchun Liu, Robotic Assembly System Guided by Multiple Vision and Laser Sensors for Large Scale Components, IEEE International Conference on Robotics and Biomimetics, 2015.    40.Wei Liu, Tianshi Chen, Peng Wang et. al., Pose estimation for 3D workpiece grasping in industrial environment based on evolutionary algorithm, Journal of Intelligent and Robotic Systems, (2012) 68:293-306.           41.Dongchun Ren, Peng Wang et. al., A biologically inspired model of emotion eliciting from visual stimuli, Neurocomputing, Volume 121, Pages 328-336, 2013.         42.Hong Qiao, Yanlin Li, Tang Tang and Peng Wang, Introducing Memory and Association Mechanism Into a Biologically Inspired Visual Model, IEEE Transactions on Cybernetics, Volume:44 , Issue: 9 , 1485 - 1496 , Sept. 2014          43.Peng Wang, et al., Salient region detection based on Local and Global Saliency, IEEE International Conference on Robotics and Automation (ICRA), 1546 – 1551, 2014, Hong Kong.         44.Wanyi Li, Peng Wang et. al., A Survey of Visual Attention Based Methods for Object Tracking. Acta Automatica Sinica, 2014, 40(4): 561-576.   45.Peng Wang et. al., Adaptive probabilistic tracking with multiple cues integration for a mobile robot, IEEE International Conference on Control and Automation, 2010, pp. 713-718.            46.Peng Wang et. al., Object Tracking with Serious Occlusion Based on Occluder Modeling, IEEE International Conference on Mechatronics and Automation, 2012. pp. 1960-1965          47.Wanyi Li, Peng Wang et. al., Double least squares pursuit for sparse decomposition, International Conference on Intelligent Information Processing, 2012.     48.Jiuqi Han and Peng Wang et.al., Tuning of PID Controller Based-on Fruit Fly Optimization Algorithm, IEEE International Conference on Mechatronics and Automation, 2012.   49.Jiwu Dong, Jianhua Su, Hong Qiao and Peng Wang, Optimal Fixture Design in the Large Plates of Optical Glass Assembly, IEEE International Conference on Mechatronics and Automation, 2012.    50.Jing Tao, Peng Wang, et. al., Facility Layouts Based on Differential Evolution Algorithm, IEEE ROBIO 2013          51.Zhengke Qin, Wenjun Zhu, Peng Wang and Hong Qiao, Workpiece Localization with Shadow Detection and Removing, IEEE ROBIO 2013          52.Wenjun Zhu, Qinzheng Ke, Peng Wang and Hong Qiao, Model-based Work-piece Localization with Salient Feature Selection, IEEE ROBIO 2013          53.Peng Wang,et al., Adaptive Visual Tracking with feature selection for mobile robot, IEEE CYBER,2014, HongKong.               54.Wanyi Li, Peng Wang, Visual Tracking Via Saliency Weighted Sparse Coding Appearance Model, ICPR, 2014.

获奖及荣誉

1、北京市科学技术一等奖,2012年2、北京市科学技术二等奖,2015年
3、中国自动化学会技术发明一等奖,2018年
4、第三届中国创新挑战赛(扬州)优胜奖,2018
5、中国科学院青年创新促进会人才计划,2014年
6、杰出审稿人 Outstanding Reviewers, IEEE Transactions on Instrumentation and Measurement, 2020年、2021年
7、中国科学院自动化所“十佳员工”,2012年

专利成果

1.类人灵巧操作移动机器人,授权号:ZL202310253700
2.神经拟态灵巧手机器人,授权号:ZL202210442688
3.仿人五指灵巧手,授权号:ZL202210442685X
4.五自由度全驱动仿人大拇指和仿人灵巧手,授权号:ZL2022104426258
5.灵巧手腱绳驱动单元、驱动装置及仿生灵巧手,授权号:ZL2022104426864
6.一种机器人抓取方法、装置、电子设备及计算机介质,授权号:ZL2021111077399
7.机器人柔性作业方法、装置及机器人,授权号:ZL2021108139309
8.带角度估计的管线焊点深度学习视觉检测方法,授权号:ZL2021101812482
9.基于视觉注意建模融合的缺陷样本自动标注方法及系统,授权号:ZL2021105556589
10.基于先验知识的小目标实时检测与定位方法、系统、设备,授权号:ZL202110129392.1
11.知识图谱的要素推测方法、装置、电子设备和存储介质,授权号:202211452684X
12.城市群运行状态知识图谱构建方法、系统及设备,授权号:ZL2021103377461
13.叶片精整作业机器人系统,授权号:ZL2021102203566
14.用于航空发动机叶片精整的磨抛装置,授权号:ZL2021102203443
15.零件表面瑕疵检测中神经网络的训练样本的合成方法,授权号:ZL2018112217192
16.基于深度卷积生成对抗网络样本生成的外观瑕疵检测方法,授权号:ZL2018112787622
17.线状工件焊点焊接质量检测系统及方法,授权号:ZL201910345423X
18.基于多传感器融合的机器人自动化装配方法及装置,授权号:ZL201910647544X
19.显著区域检测方法和检测系统,授权号:ZL2016108891003
20.基于图像重构卷积神经网络的零件外观瑕疵检测方法,授权号:ZL2018112787919
21.零件表面瑕疵检测中神经网络的训练样本的合成方法,授权号:ZL2018112217192
22.大口径光学元件的姿态调整装置,授权号:ZL2016107286808
23.一种基于视觉传感器和激光测距仪的位姿检测装置与方法,授权号:ZL2015102293711
24.一种智能装配序列规划方法,授权号:ZL2014103426256
25.自动夹持套件,授权号:ZL2016107260117
26.一种基于动态规划与遗传算法的装配序列规划方法及装置,授权号: ZL2014101207362
27.一种多边形工件检测定位方法,授权号:ZL2014103051984
28.一种机器人自动化装配系统,授权号:ZL2015101194206
29.一种显著性区域检测方法及装置,授权号:ZL2014103017979
30.基于遮挡物建模的有遮挡情况下的目标跟踪方法,授权号:ZL201010034354X
31.动态场景下基于局部背景剪除的自适应目标跟踪方法.,授权号:ZL2010100343535

社会任职

1.中国计算机学会智能机器人专业委员会常务委员,2019年 2.中国计算机学会高级会员,2020年 3.中国自动化学会混合智能专业委员会委员,2017年 4.全国信息技术标准化技术委员会信息技术服务分技术委员会委员,2021年 5.中国自动化学会机器人智能专业委员会委员,2021年 6.Guest Associate Editor, Frontiers in Robotics and AI, 2021年